NASA SBIR 2017 Phase I Solicitation ## H7.01 In-Space Manufacturing of Electronics and Avionics **Lead Center: MSFC** Participating Center(s): ARC Technology Area: TA12 Materials, Structures, Mechanical Systems and Manufacturing The purpose of this subtopic is to encourage highly collaborative research and development in the area of In-Space Printable Electronics capabilities geared towards laying the foundation and infrastructure for the next generation of in-space advanced electronics manufacturing technologies. ## Hardware 3D Electronics Manufacturing Hardware Miniaturization and Adaptation for Microgravity Environment including but not limited to: - Repackaging and modularization of commercially available state-of-the-art electronics printer platforms such as: aerosol jet, ink-jet, poly-jet, and fluidic dispensing systems. - Addition of in-line 3D scanning metrology processes to existing printer platforms. - Implementation of in-line laser and photonic sintering processes into existing electronics manufacturing platforms. - Integration of advanced robotic and automation processes into printing processes to facilitate hybrid electronic manufacturing and assembly. - Introduction of advance automated multi-material handling and delivery into electronics manufacturing processes. - Incorporation of open source flexible hardware architectures into existing printer platforms to promote highly specialized and advance electronics manufacturing solutions. ## **Software** Advanced Software Development for Ultimate Portability and Autonomy for use in Microgravity based 3D Electronics Printers and Manufacturing Systems: - Development of open-source flexible intuitive software environments and applications that integrate multiple electronic printing methodologies including but not limited to: aerosol jet, ink-jet, plasma-jet, FDM, fluidic and laser assisted dispensing. - Improving existing open-source software platforms to support advanced open electronics printer hardware configurations and architectures to support the addition of cutting-edge metrology and digital manufacturing solutions. - Introduction of advanced integrated design and manufacturing graphical user environments that support autonomous and tele-operation of 3D electronics printers and manufacturing systems. - Implementation of Graphical user-friendly utilization cataloging and database software to support organization, classification, and utilization of in-space manufactured avionics. - Development of new versatile algorithms and software processes geared towards 3D electronics printer robotic tool-path planning and routine development from inside electrical and mechanical design environment. - Advance the state-of-the-art in portable mechanical and electrical design packages for in-space manufacturing through the development of integrated electrical and mechanical design software and tools that include support for in-space multi-material avionics parts production. Phase I Objectives - Near term performance targets consist of electronics printer prototypes aimed at the in-space production of novel avionics products that are commonly based on passive electronic elements such as: resistors, capacitors, inductors, transformers, and diodes to supply on-orbit non-critical avionics parts production. Near term software targets will focus primarily on increasing portability and reliability of existing open software architectures for 3D printing to include support for in-space 3D electronics printing and multi-material advanced manufacturing processes. *Ending TRL 4 for Hardware and Software Prototypes. Phase II Objectives - Mid-term objectives will seek to improve existing in-space electronics manufacturing capabilities to include higher complexity active electronic elements such as semiconductor based avionics products. *Ending TRL 5-6. Phase III Objectives - Far-term objectives will include continued development of advanced in-space electronics manufacturing infrastructure and seek to introduce feasible concepts for deployable self-replicating and self-supporting avionics manufacturing architectures and systems. *Ending TRL 6-9.